Фирма-монополист производит едкие химикаты, средние издержки фирмы в период $t$ имеют вид: $$AC_t=\frac{1}{1+3\Sigma_t Q_i},$$ где $\Sigma_t Q_i$ — кумулятивный объём продукции, произведёной фирмой в периоды до $t$. Спрос в отрасли характеризуется функцией $$Q_d=\frac{1}{P^2}$$в каждый период. Фирма будет работать ровно 2 периода: $t\in\{1;2\}$. До первого периода фирма ничего не производила
Рассмотрим кривую Лоренца $y(x)$, где $x$ - доля беднейших жителей страны, $y$ - доля в общем доходе страны, которой владеет доля $x$ беднейшего населения. Назовем индексом Робин Гуда (или индексом Гувера) величину, показывающую, какая (минимально возможная) доля суммарного дохода должна быть перераспределена, чтобы достичь абсолютно равномерного распределения доходов.
Рассмотрим потребителя-ценополучателя с функцией полезности $U(x,y)$ и доходом $I$. Государство с целью пополнить казну на $T$ единиц решает какой налог ввести: потоварный на благо $x$ или аккордный (в размере $T$).
а) Какой налог выгоднее для потребителя -- аккордный или потоварный, если $y$ -- расходы потребителя на остальные товары?
б) Положим $x_1^{(0)}$ и $x_1^{(1)}$ - оптимальные объемы потребления после введения потоварного и аккордного налога соотвественно. Сравните величины $x_1^{(0)}$ и $x_1^{(1)}$.
Петр и Глеб изготавливают ножи ($X$) и напильники ($Y$). Петр за 1 час способен произвести 1 нож или 1 напильник (или любую линейную их комбинацию). Глеб же за 1 час способен проивести половину ножа или 1 напильник (аналогично, или любую линейную их комбинацию). Известно, что если ребята работают в команде, то есть одноврменно производят один вид продукции, то производительность труда каждого из них увеличивается в $\alpha$ раз!
Постройте суммарную КПВ ребят при различных значениях $\alpha$, если каждый из них может работать не более 10 часов.
Страна А производит товары 3 типов: икс($x_1$), игрек($y_1$) и зет($z_1$). Известно, что 1 единица товара первого типа производится из 1 единицы сырья, второго - из двух, а третьего - из трех. Запас сырья в стране А составляет 180 единиц. По соседству расположена страна B, которая также производит икс($x_2$), игрек($y_2$) и зет($z_2$) так, что для производства одной единицы икса требуется одна единица сырья, второго - три единицы, третьго - две. Запас сырья в стране А составляет 240 единиц. Сырье невозможно транспортировать между странами.
На одном предприятии система определения уровней производства на двух заводах происходит следующим образом: менеджер Аркадий говорит генеральному директору величину расходов ($A$) на производство $Q=q_1+q_2$, после чего директор определяет согласовывать бюджет или нет. Известно, что издержки на первом и втором заводе описываются функциями $TC_1=q_1^2+q_1+10$ и $TC_2=q^2_2+q_2+20$. Конечно, директор может сказать сумму большую, чем он мог бы потратить на производство, главное, чтобы существовала такая пара $(q_1,q_2)$, чтобы $TC(q_1)+TC(q_2)=A$.
Компания $B$ заслала диверсанта Петра в компанию $A$ в качестве экономиста. В компании $A$ ему выдали задание израсходовать 372 д.е. Сначала средства тратятся на покупку канцелярских комплектов($x$), стульев($y$) и компьютеров($z$). Цены на которые составляют 12, 17 и 216 д.е. соответственно. Полезность получаемая офисом задаётся следующей формулой: $$U = \sqrt{x^2-6x+y^2-14y+z^2+58}$$
Производитель, средние издержки которого составляет 10 долларов, продает товар двум розничным торговцам, которые принимают решение в два шага.
Во-первых, они одновременно и независимо решают, инвестировать или нет в рекламную кампанию. Если хотя бы один платит за рекламу, рыночный спрос составит $Q=40-P$. Если никто не инвестирует, спрос низкий: $Q=28-P$. Затраты на рекламную кампанию $S=70$. При этом производитель не может сам запустить рекламную кампанию и не может заставить розничных продавцов платить за нее.