Аккордные трансферты и неравенство

В стране А кривая Лоренца задаётся квадратичной функцией. При этом самый богатый житель получает доход в 3 раза больше самого бедного. Для поддержки населения правительство решило осуществлять фиксированные выплаты каждому гражданину, размер выплат для всех одинаковый. В остальном доход людей не изменился. Оказалось, что после проведения данной политики суммарный доход всех граждан вырос на 50%, и теперь самый богатый получает в 2 раза больше, чем самый бедный. Определите, насколько изменился коэффициент Джини в данной стране.

Странные предпочтения Бетти Купер

Бетти очень любит пить молочные коктейли(x) и проводить время с птицами, особенно с одним Бакланом(y). Ее функция полезности задается уравнением $U=0.5*(y-x)^2$, при чем $x>0$ и $y>0$.
Но вот у Бетти появилась подруга Вероника, которая сильно изменила ее мировоззрение, и теперь ее полезность задается следующим образом $U=x*y*|ln(y)-ln(x)|-|(y-x)|*\min\{x,y\}$.
Определите, лучше ли стало жить Бетти после знакомства с Вероникой?

Нелинейный тариф монополиста

На рынке задач на карусель работает монополист. Спрос первого потребителя на задачи задаётся функцией $Q^D_1=10-P$, а второго потребителя $Q^D_2=14-P$, где $P$ - цена одной задачи и $Q$ - количество задач. Издержки монополиста на производство задач задаются уравнением $TC=0.5Q^2$.

Допустим, монополист назначает потребителям двойной тариф. То есть потребители задач сначала платит монополисту некоторую сумму за возможность покупать задачи, а затем платят за каждую купленную задачу цену, назначенную монополистом.

Анчоус

Предположим, что страна Анчоус импортирует анчоусы из страны Санчоус и соответствующая кривая спроса Анчоуса на анчоусы имеет вид $Q_x= 60/(P^X_{\$})^{1.5}$, где $P^X_{\$}$ - цена за единицу анчоуса в долларах. (валюте страны Анчоус)

Страна Санчоус импортирует саночусы из страны Анчоус, и соответствующая функция спроса Санчоуса на санчоусы равна $Q_y= 120/(P^Y_{e})^{0.5}$, где $P^Y_{e}$ это цена за единицу санчоуса в евро (валюта страны Санчоус).

Дальняя дорога

Однажды экономист проезжал мимо поста дорожной службы, где увидел своего дядю-инспектора. Завязался разговор, в ходе которого миллиционер поднял наболевшую тему: “Вот, ездят обгонщики по обочине, а честные граждане вынуждены их пропускать и тратить своё время”. На что экономист заметил: “Но ведь от того, что используется больше полос, пропускная способность дороги увеличивается”. Они пожали руки, и экономист поехал дальше, думая про себя о проблемах автодорожного регулирования.

Сложение нелинейных кривых Лоренца.

А) Зададим две функции кривых лоренцов.
$$1) y_1=x_1^a$$
$$2) y_2=x_2^b$$

Пусть население первой страны = $A_1$. А все их доходы $\sum \limits_1^{A_1}=B_1$
Пусть население второй страны =$A_2$. А все их доходы $\sum \limits_1^{A_2}=B_2$

Задача: сложите данные кривые лоренца

Б)Пусть в первой стране кривая лоренца состоит из двух групп и задается системой:

\begin{equation*}
\begin{cases}
bx_1 x \in [0: \alpha]\\
-c+(1+c) \cdot x_1 x \in [\alpha: 1]
\end{cases}
\end{equation*}

Монополист и рынок труда

Пусть у нас есть монополист, который может либо нанимать как монопсонист местных рабочих $w_{s} = 2L + 4$, либо за $8$ сколько угодно мигрантов. Монополист продает товар на рынке $Q_{d} = 16 - P$, производственная функция $Q = L$.
(а) Пусть фирма может дискриминировать работников. Найдите сколько наймут местных и мигрантов.
Как вы можете заметить, местным работникам это не понравилось
(б) Теперь фирма не может дискриминировать. Найдите сколько наймут местных и мигрантов.

Тысяча и один завод

Задача:
Фирма владеет 1001 заводом, функции издержек которых задаются следующей геометрической прогрессией: $b_1=q^2$, q=2: $TC_1=q_1^2$, $TC_2=2q_2^2$, $TC_3=4q_3^2$, $TC_4=8q_4^2$, и так далее.

Вопросы:
-Найдите TC фирмы.
-К чему стремятся общие издержки фирмы при увеличении количества заводов?
-Определите уровень выпуска для i завода при общем уровне выпуска Q и количестве заводов n.

Примечания:
-В первом вопросе используйте общую формулу геометрической прогрессии.

Общая кривая Лоренца

В стране N есть два региона: A и B. В регионе A живут 12000 человек, их общий доход составляет 144000, кривая Лоренца задается уравнением $y = x^2$. Население региона B равно 8000, общий доход всех жителей равен 96000. В регионе B есть две равные по численности группы населения: богатые и бедные. Доход внутри каждой группы одинаков, при этом суммарный доход бедных в два раза меньше суммарного дохода богатых.
а) Задайте аналитически кривую Лоренца, отражающую распределение доходов в стране N. Рассчитайте коэффициент Джини.

Яретации

Господин Яретации хочет открыть бизнес по продаже жемчужин. Это очень долгий кропотливый процесс, который происходит следующим образом: сначала необходимо купить на черном рынке жемчужины диаметра 1, по цене рубль за килограмм. В силу моды и тенденций, на конечном рынке потребители готовы купить сколько угодно жемчужин, так же по цене 1 рубль за кг, но только диаметра $ 1/(2^k), k>0 $, жемчужины другого диаметра сейчас не ценятся.