Горизонтальные экстерналии

Производитель, средние издержки которого составляет 10 долларов, продает товар двум розничным торговцам, которые принимают решение в два шага.

Во-первых, они одновременно и независимо решают, инвестировать или нет в рекламную кампанию. Если хотя бы один платит за рекламу, рыночный спрос составит $Q=40-P$. Если никто не инвестирует, спрос низкий: $Q=28-P$. Затраты на рекламную кампанию $S=70$. При этом производитель не может сам запустить рекламную кампанию и не может заставить розничных продавцов платить за нее.

Sussy рынок

1) Sussy рынок
Армянин Амогус и его брат Омогус решили торговать на рынке нард, спрос на котором задается уравнением P = max{10 - Q; 0}.
Братья - олигополисты, принимающие решения независимо и одновременно, братская любовь все же не абсолютная
Издержки Амогуса задаются так:
TCа = 4Qa - 5Qo + 5, Qa > 0 и
4Qa - 5Qo, Qa = 0.
Амогус очень любит своего брата, так что невероятно радуется его продажам, но зато сам продавать он не очень любит
TCo = 4Qo, издержки Омогуса же не зависят от его брата.

Кнуты и пряники

Фирма по производству кнутов $(x)$ и пряников $(y)$ планирует свой выпуск на следующий месяц. Известно, что рыночные цены установилась на уровнях $P_x$ и $P_y$ руб. на кнуты и пряники соответственно.
Производство товаров обходится фирме в $(x+y)^2$ руб.

Определите уровень оптимального производства $(x^*;y^*)$ при различных парах $(P_x;P_y)$.

Все задачи автора

Без математики никуда

Ученики А, М и Е решают задачи по экономике и математике. КПВ каждого из них имеет вид $y=4-\frac{x}{3}$, $ y=12-3x$, $y=6-x$, где $x$ -- задачи по экономике, $y$ -- задачи по математике. Они решили заниматься в кафе, где осталось только 2 места, так что решать может только двое из них, а третий уйдёт домой. Однако ребята очень неусидчивые, поэтому вместе они могут решить только 20 задач по экономике и математике.

Постройте кривую производственных возможностей лицеистов.

Абсервант

Рассмотрим рынки товаров $X$ и $Y$, спрос на каждом из которых описывается функциями $X_d=100-P_x$ и $Y_d=100-P_y$. Фирма "Абсервант" является монополистом на рынке товара $X$ и совершенным конкурентом на рынке $Y$, где конкурентное окружение имеет суммарную функцию предложения $Y_s=P_y$.

Трехмерное потребление

Господин M потребляет всего три блага: жареную картошку ($x_1$), майонез ($x_2$) и агрегированное благо ($x_3$). Полезность, получаемая от потребления каждого из них, описывается функцией: $u_i(x_i)=10x_i-x_i^2$. Известно, что доход потребителя составляет $I$ д.ед, а рыночные цены на все блага равны 1.

а) Постройте карту кривых безразличия в координатах $(x_1,x_2,x_3)$ , если г. М максимизирует суммарную полезность $U=\Sigma u_i(x_i)$.

б) Определите максимально возможный уровень полезности $U(x_1^*;x_2^*;x_3^*)$ при различных значениях $I$.

Каскад на рынке труда

Фирма "Каскад" работает на совершенно-конкурентном рынке труда и монопольном рынке готовой продукции, спрос на которую описывается функцией $q=100-p$, где $q$ - выпуск монополиста, $p$ - цена готовой продукции. Каскад, работая с производственной функцией $q=\sqrt{l}$, где $l$ - численность рабочих, несет только издержки на труд.

а) Выведите функцию индивидуального спроса на труд $l^d(w)$ и постройте её в осях $(l,w)$.

Квадратичный Лоренц

Для экономики страны Кси известно, что кривая Лоренца описывается уравнением:

$$y=ax^2+bx+c,$$

где $x$ - доля беднейших жителей страны, $y$ - доля в общем доходе страны, которой владеет доля $x$ беднейшего населения, $a$ $(a\neq0), b, c$ - некоторые параметры, значения которых точно не известно.

Определите множество возможных значений коэффициента Джини в стране Кси.

Все задачи автора

Секретная лаборатория

В одной химической лаборотории производятся две смеси: икс ($X$) и игрек ($Y$). Известно, что икс и игрек синтезируются из двух веществ - альфа ($\alpha$) и бета ($\beta$). Для синтеза одной единицы икса требуются одна единица альфа и 2 единицы бета, а для производства одной единицы $Y$ требуется только 4 единицы альфа.

а) Постройте КПВ лаборатории в координатах $(X;Y)$, если запасы веществ, необходимые для производства икса и игрека, равны $(\overline{\alpha};\overline{\beta})=(64;32)$.

Великие стеклодувы

Великие стеклодувы Адриан, Бенни и Вальдемар выдувают из стекла, общий запас которого равен 16, три вида фигурок: икс($x$), игрек($y$) и дзет($z$).

Технология производства фигурок представлена в таблице: