В центре города Набережные Челны есть парк. В городе живет N жителей. Полезность i-го жителя: $U_i=\theta_i ln(g) - g_i$, где $g_i$ – вклад i-го жителя в благоустройства парка, $g=g_1+g_2+...+g_N$ – общий вклад в благоустройство парка, а $\theta_i = 1/2^i$ - параметр предпочтений, который является общим знанием.
a) Найдите социально-оптимальный уровень благоустройства парка. (здесь надо максимизировать суммарную полезность)
В стране Скуфиляндия существует одно единственное озеро где водится здоровый карась. Группа из рыбаков решает поделить озеро для рыбалки. Для этого они чертят схему озера: окружность диаметром 40 см. Затем каждый по очереди чертит окружность диаметром 20 см - место, где он будет рыбачить на своей лодке. Окружности могут лишь касаться, но не накладываться друг на друга; заходить за край озера можно, если центр окружности внутри озера и не нарушено первое условие. Рыбак, который не может начертить окружность, не рыбачит.
Администратору спортивного лагеря нужно расселить чётное количество детей из первого отряда по комнатам. В каждой комнате могут жить ровно 2 человека. Все дети — девочки, поэтому изначально возможна любая пара потенциальных соседей. У каждого из детей есть предпочтения на множестве потенциальных соседей, то есть каждый из ребят может упорядочить всех потенциальных соседей от наилучшего для себя до наихудшего. При этом, для каждого из ребят эти предпочтения строгие — не существует двух соседей, которые были бы одинаково хороши с точки зрения кого-либо из ребят.
Вы - крупный инвестор, чьи активы распределены на N банковских счетах в стране Пластилине (других активов у вас нет, как и возможности кредитоваться). Вам стала известна информация о том, что через 1 день страна будет подвержена массе терактов и образуется множество социальных напряжений, поэтому набег вкладчиков неизбежен. Вы, как рациональный агент, обладающий ассиметричной информацией- инсайдом, должны ей воспользоваться (снять с счетов максимальное количество денег, чтобы понести минимальные убытки от ожидаемого экономического кризиса).
На рынке со спросом $Q=10-P$ конкурируют по ценам две одинаковые фирмы с издержками $TC=2Q$. Обе фирмы назначают цены, после чего все потребители покупают у той фирмы, которая назначила меньшую цену. Если цены равны, то спрос делит поровну между фирмами. Цены можно назначать только $\textbf{целыми}$, найдите все возможные пары равновесных цен.
Производитель, средние издержки которого составляет 10 долларов, продает товар двум розничным торговцам, которые принимают решение в два шага.
Во-первых, они одновременно и независимо решают, инвестировать или нет в рекламную кампанию. Если хотя бы один платит за рекламу, рыночный спрос составит $Q=40-P$. Если никто не инвестирует, спрос низкий: $Q=28-P$. Затраты на рекламную кампанию $S=70$. При этом производитель не может сам запустить рекламную кампанию и не может заставить розничных продавцов платить за нее.
Боб (агент 1) и Джон (агент 2) очутились на необитаемом острове. Ребятам приходится питаться рыбой($x$) и кокосами($y$), которыми Боб владеет в размере $(x_{1},y_{1})=(5, 10)$, а Джон - в размере $(x_{2},y_{2})=(10, 5)$.
Известно, что предпочтения в потреблении рыбы и кокосов описываются функциями полезности: $U_{1}=x_{1}+y_{1}$ и $U_{2}=x_{2}y_{2}$ для Боба и Джона соответственно.
Озеро Йутават представляет собой идеальный круг. Борис, Евгений и Максим ловят в этом озере рыбу и продают ее местным жителям, которые живут вокруг озера. Каждый день рыбаки независимо друг от друга выбирают, в каких точках на берегу (окружности) озера организовать продажу рыбы. Жители распределены вокруг озера равномерно (то есть на каждый километр расстояния вдоль окружности приходится одинаковое и достаточно большое число жителей).
В стране С происходит промышленный переворот, поэтому ей срочно требуются железные дороги для лучшей мобильности факторов производства. Для этого государством была создана компания РШТ, которая будет единственной фирмой на рынке. Перед началом своей деятельности нужно построить железные дороги. Фирма выбирает, какое целое количество n дорог будет наиболее оптимально для нее. Постройка и обслуживание одной дороги обходятся в 1225 рубллионов в год.
Спрос на поездку на поезде задается функцией Pd=1000-Q(n^2-8n+32)/8