В регионе $X$ присутствуют два предприятия (Альфа и Бета), каждое из которых производит готовую продукцию исключительно с помощью труда: каждая единица труда может произвести одну единицу продукции в фирме Альфа либо две единицы продукции в фирме Бета. На рынках конечной продукции обе фирмы являются монополистами, при этом спрос на продукцию фирм определяется как $\alpha = 30 - p_{\alpha}$ и $\beta = 40 - p_{\beta}$ соответственно. В то же время, на региональном рынке труда фирмы действуют как совершенные конкуренты, полагая, что никак не могут влиять на заработную плату.
Жителей города Сиград можно разделить на $N$ равных по численности групп так, чтобы в каждой группе у всех был равный доход. При этом люди из разных групп тоже могут получать одинаковый доход. Известно, что самая бедная группа жителей получает $10\%$ доходов всего населения, а самая богатая $–$ $30\%$. При каком $N$ минимально возможное значение коэффициента Джини в городе Сиград будет минимальным? Найдите это значение.
Кузнец Вакула из Дакиньки после первой удачной сделки решил создать собственный бизнес по обувному ритейлу. Осталось выбрать одну из альтернатив (совмещать нельзя): продавать отечественные лапти или поставлять модные черевички из-за границы. Конкуренция на рынке лаптей значительная, поэтому Вакуле остаётся только продавать свои лапти по рыночной цене $20$ рублей. Издержки его при этом составят $TC = 2Q^2 + 4Q + 30$ рублей за $Q$ пар обуви. Рынок заморских черевичек новый для Дакиньки, Вакула может стать первым и уникальным поставщиком.
Московский таксист Василий ежедневно выбирает себе количество рабочих часов $h \geq 0$. Почасовая ставка заработной платы Василия составляет $w$ рублей. Чем дольше рабочий день, тем сильнее устаёт таксист, поэтому издержки на работу в течение $h$ часов для него составляют $2h^2$. Выходя на работу, Василий рассчитывает заработать за день сумму $1600$ рублей, которая является для него точкой отсчёта: он сильно расстраивается, если у него не получается заработать ожидаемую сумму за день. Таким образом, функция полезности Василия имеет
Фирма «Карамелька» является монополистом на рынке конфет. Спрос на конфеты предъявляют $20$ потребителей. Покупка $q$ кг конфет по цене $P$ приносит каждому потребителю удовольствие в размере $U = 10q - P^2q^2$. Потребитель максимизирует удовольствие. Если потребителю безразлично, покупать или нет, он предпочтёт купить товар. Издержки монополиста составляют $TC = 5Q + 1$. Какую цену на свою продукцию должна установить «Карамелька»? Какое количество она произведёт?
Маленькое, но гордое государство Замунда в основном специализируется на выращивании манговых деревьев, поскольку всё население страны обожает манго. Спрос на манго в Замунде имеет вид $Q_{d} = 200 - P$, где $Q_{d}$ $-$ величина спроса на манго в тоннах, $P$ $-$ цена манго в дундуках (валюта в Замунде). Предложение местных фермеров задаётся функцией $Q_{s} = 2P - 10$, где $Q_{s}$ $-$ величина предложения манго в тоннах, $P$ $-$ цена манго в дундуках. Замунда также может торговать с внешним миром на мировом рынке манго, где цена за $1$ тонну составляет $6$ долларов.
На рынке обслуживания автомобилей в Цветочном городе конкурируют два механика: Винтик и Шпунтик. Ежемесячный спрос на услуги механиков описывается функцией $Q_{d} = 100 - 2P$. Функция издержек Винтика $TC = \frac{Q^2}{10}$, и он выбирает, принимать в месяц $50$ или $60$ заказов. Мастерская Шпунтика обладает более скромными возможностями: при функции издержек $TC = 2Q$, он выбирает между объемами $20$ или $40$ заказов в месяц.
Центральный банк готовится принять очередное решение по ставке процента. Ставка процента определяется согласно правилу Тейлора: $i_{t} = 2(\pi_{t} - 0,5) + 4(x_{t} - 0)$, где $\pi_{t}$ $-$ инфляция в процентах, $x_{t}$ $-$ разрыв ВВП в процентах (отклонение фактического ВВР от потенциального), $i_{t}$ $-$ ставка процента. Центральный банк принимает решение, минимизируя свою функцию потерь: $L = (\pi_{t} - 1)^2 + x_{t}^2$. При этом ЦБ учитывает кривую Филлипса при принятии решения, которая выглядит следующим образом: $x_{t} = 2 - 2\pi_{t}$.
Монополист с функцией издержек $TC = 20Q + 100$ работает на рынке с двумя группами потребителей. Группы неразличимы между собой: продавец устанавливает единую цену на свою продукцию. Функция спроса первой группы: $Q_{1}^d = 80 - 2P$, второй $Q_{2}^d = 150 - 3P$.
Вопрос 1 (7 баллов). Какую цену назначит монополист? Вопрос 2 (2 балла). Сколько единиц продукции приобретёт первая группа? Вопрос 3 (2 балла). Сколько единиц продукции приобретёт вторая группа?
Жители планеты Вулкан любят сыр, спрос на него на Вулкане описывается функцией $Q_{d} = 1300 - p$. При этом на самом Вулкане сыр производить сложно, потому что там жарко. Предложение сыра на Вулкане имеет вид $Q_{s} = -200 + 2p$. К счастью, в Объединённой федерации планет разрешена свободная торговля сыром, и на международном рынке можно купить или продать сколько угодно товара по цене $300$. Участие Вулкана в международном рынке не изменит цену.